

# **UV/VIS Spectrophotometer**

## Features:

- \* With Si02 coating optical mirror, reducing the pollution from outside fully
- \* Wavelength calibration, wavelength setting, change lamp source and dark current calibration automatically
- \* With GLP self-check function, check the wavelength accuracy and Photometry accuracy
- \* PC Software to expand the applications to Quantitative, Multi-Wavelength and Kinetics, Spectrum Scanning, DNA/Protein test for PC Series

#### **Basic Functions:**

\* Photometry

Test Abs., Transmittance and Energy by fixed wavelength.

\* Kinetics

Used for time course scanning or reaction ratecalculations △A/t, can search all data.

\* Multi-Wavelength

Can test Transmittance and Abs. with 8 different wavelengths c. Can save 240 group curves, can test 240 data in each at most

### \* Quantitative

Linear fit and Linear fit through zero two modes

- a. Coefficient, Standard Sample input and Standard Sample read three modes to establish standard curve.
- b. Establish A=K1\*C+K0, can search original data, graph curve, parameters settings
- d. Double wavelength, Triple wavelength test functions.

# **Technical Parameters:**

| Model                     | BK-UV1800                                                                                       | BK-UV1600   | BK-V1800                            | BK-V1600    |
|---------------------------|-------------------------------------------------------------------------------------------------|-------------|-------------------------------------|-------------|
|                           | BK-UV1800PC                                                                                     | BK-UV1600PC | BK-V1800PC                          | BK-V1600PC  |
| Optical System            | Single Beam, Grating 1200 lines/mm                                                              |             |                                     |             |
| Wavelength Range          | 190~1100nm                                                                                      |             | 320~1100nm                          |             |
| Spectral Bandwidth        | 2nm                                                                                             | 4nm         | 2nm                                 | 4nm         |
| Wavelength Accuracy       | ±0.5nm                                                                                          |             |                                     |             |
| Wavelength Repeatability  | ≤0.2nm                                                                                          |             |                                     |             |
| Photometric Accuracy      | ±0.002A (0~0.5Abs), 0.004A (0.5~1.0Abs), ± 0.5% T (0~100% T)                                    |             |                                     |             |
| Photometric Repeatability | 0.001Abs (0~0.5Abs), 0.002Abs (0.5~1.0Abs), ≤0.2% T (0~100% T)                                  |             |                                     |             |
| Stray Light               | ≤ 0.04% T @ 360nm; 220nm                                                                        |             | ≤ 0.04% T @ 360nm                   |             |
| Stability                 | ±0.001A/h @ 500nm                                                                               |             |                                     |             |
| Baseline Flatness         | ±0.002A                                                                                         |             |                                     |             |
| Noise                     | ±0.0005A                                                                                        |             |                                     |             |
| Display                   | 480*272 65 thousand true color TFT LCD                                                          |             |                                     |             |
| Photometric Mode          | T, A, C, E                                                                                      |             |                                     |             |
| Photometric Range         | 0~200% T, -0.301~3.0A                                                                           |             |                                     |             |
| Detector                  | Silicon Photodiode                                                                              |             |                                     |             |
| Light Source              | Deuterium Lamp, Tungsten Lamp                                                                   |             |                                     |             |
| Input                     | Membrane Keypad                                                                                 |             |                                     |             |
| Output                    | USB-A*2 Print and data output USB-B Connect PC                                                  |             |                                     |             |
| Standard Accesseries      | 1cm glass cuvette*4, 1cm quartz cuvette*2,                                                      |             | 1cm glass cuvette*4, 1cm            |             |
|                           | 1cmquadruple cuvette holder*1,                                                                  |             | quadruple cuvette holder*1,         |             |
|                           | Scanning software(only for PC type)                                                             |             | Scanning software(only for PC type) |             |
| Optional Accessories      | 1cm standard single slot cuvette holder, long optical path cuvette holder, cuvette, micro       |             |                                     |             |
|                           | cuvette, test tube type absorber rack, solid sample holder, deuterium lamp(only for UV series), |             |                                     |             |
|                           | tungsten lamp, quadruple cuvette holder, printer, four-slot water bath type constant            |             |                                     |             |
|                           | temperature absorption pool, X-Y Adjustable Micro Absorption Pool, single bath type constant    |             |                                     |             |
|                           | temperature absorption pool, program-controlled thermostatic absorption pool seat, 8 racks,     |             |                                     |             |
|                           | reflection accessories, general application software or Scanning software(not for PC type)      |             |                                     |             |
| Power Supply              | AC110/220V±10%, 60/50Hz                                                                         |             |                                     |             |
| Package Size(W*D*H)mm     | 620*500*370                                                                                     | 620*500*370 | 620*500*370                         | 620*500*370 |
| Gross Weight(kg)          | 18                                                                                              | 18          | 16.5                                | 16.5        |

# Scanning UV/VIS Spectrophotometer

## Features:

- \* With Si02 coating optical mirror, reducing the pollution from outside fully
- \* Adopted high-class grating with wholly hermetic light path design, to ensure the instrument has the super low stray light
- \* With GLP self-check function, check the wavelength accuracy and Photometry accuracy
- \* Real-time monitoring the lifetime of Deuterium lamp and Tungsten lamp with advanced system
- \* Wavelength calibration, wavelength setting, change lamp source and dark current calibration automatically

## Basic Functions:

\* Photometry

Test Abs., Transmittance and Energy by fixed wavelength.

\* Quantitative

Linear fit and Linear fit through zero two modes

a. Coefficient, Standard Sample input and Standard Sample read three modes to establish standard curve.

- b. Establish A=K1\*C+K0, can search original data, graph curve, parameters settings.
- c. Can save 240 group curves, can test 240 data in each curve.
- d. Double wavelength, Triple wavelength test functions.

#### \* Kinetics

Used for time course scanning or reaction rate calculations  $\triangle A/t$ , can search all data.

## \* Multi-Wavelength

Can test Transmittance and Abs. with 8 different wavelengths at most.

#### \* Scanning

User can set the scan range from 190nm to 1100nm to test the max. Abs. peak value, can do derivation, arithmetical operations to the graph.

## \* Biology

6 methods: DNA/Protein, UV, Lowry, BCA, CBB and

## Technical Parameters:

| BK-UV1900                                                                                        | BK-V1900<br>BK-V1900PC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 0                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  | 1cm glass cuvette*4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                  | 1cmquadruple cuvette holder*1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                  | Scanning software(only for PC type)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 1cm standard single slot cuvette holder, long optical path cuvette holder, cuvette, micro        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| cuvette, test tube type absorber rack, solid sample holder, deuterium lamp(only for UV series)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| tungsten lamp, quadruple cuvette holder, printer, four-slot water bath type constant temperature |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| absorption pool, X-Y Adjustable Micro Absorption Pool, single bath type constant temperature     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| absorption pool, program-controlled thermostatic absorption pool seat, 8 racks, reflection       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| accessories, general application software or Scanning software(not for PC type)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 18                                                                                               | 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                  | Single Beam, Grating 1200 lines/mm  190~1100nm  2nm  ±0.5nm ≤0.2nm ±0.002A (0~0.5Abs), ±0.004A (0.5~1.0Abs), 0.001Abs (0~0.5Abs), 0.002Abs (0.5~1.0Abs) ≤ 0.04% T @ 360nm; 220nm ± 0.001A / h @ 500nm ±0.002A 0.0005Abs @ 500nm  480*272 65 thousand true color TFT LCD T, A, C, E 0~200% T, -0.301~3.0A Silicon Photodiode Deuterium Lamp, Tungsten Lamp Membrane Keypad USB Print and data output, Connect PC 1cm glass cuvette*4, 1cm quartz cuvette*2, 1cmquadruple cuvette holder*1, Scanning software(only for PC type) 1cm standard single slot cuvette holder, long cuvette, test tube type absorber rack, solid satungsten lamp, quadruple cuvette holder, print absorption pool, X-Y Adjustable Micro Absorp absorption pool, program-controlled thermos accessories, general application software or AC110V/220±10%, 60/50Hz 620*500*370 |  |  |

193 194