Control of Homogeneity in Adsorption of IgG on MaxiSorp[™] and MediSorp[™] Surfaces

The certification is based on adsorption of IgG according to the following test procedure where CV is less than 5% and all well results within $\pm 10\%$ from mean.

1. Add antibody coating mixture consisting of Dako X-903 (diluted 1:5000) and Dako P-128 (diluted 1:40,000). Dilution buffer: 0.05 M Carbonate buffer, pH 9.6, 200 μ l per well (F-bottom) or 150 μ l per well (U-bottom). Seal the wells with adhesive tape to prevent evaporation.

Carbonate buffer:	$Na_2CO_3 = 1.59 \text{ g/l}$
	$NaHCO_3 = 2.93 g/l$
	diluted in ultra high purity water

- 2. Incubate in dark at room temperature overnight (minimum 16 hours).
- 3. Wash 3 times (Nunc-Immuno[™] Wash) in washing buffer.

Washing buffer:	NaCl = 20.20 g/l
	$Na_{2}HPO_{4} = 1.15 \alpha/l$
	$KH_2PO_4 = 0.20 \text{ g/l}$
	Triton X-100 = 0.50 ml/l
	diluted in de-ionised water
	pH = 7.2

4. Add substrate – 200 µl per well (F-bottom) or 150 µl per well (U-bottom).

Substrate:	Citrate ($C_6H_8O_7$, H_2O) = 7.30 g/l
	Na_2HPO_4 , $2H_2O = 11.86 g/l$
	OPD (1,2 Benzene diamine) = 600 mg/l
	Perhydrole (30% H_2O_2) = 500 μ l/l
	diluted in ultra high purity water

- 5. Stop the substrate reaction after 3.5 4 minutes by adding 2N $H_2SO_4,\,150~\mu l$ per F-well or 100 μl per U-well.
- 6. Read O.D. (Optical Density) values at 490 nm against unconverted substrate in a MicroWell[™] Plate Reader. F-wells are read at this single wavelength, whereas U-wells are read at dual wavelengths with 620 nm as a reference. It is necessary to read at dual wavelengths for U-wells in order to eliminate possible light refraction in the bottom curvatures. Therefore, dual wavelength reading is also recommended for all assays using U-wells.
- **7.** Calculate the C.V. (Coefficient of Variation) for the O.D. readings of an 8 x 12 matrix of MicroWells according to following formula:

$$C.V. = S \cdot \frac{100\%}{\overline{X}} = \sqrt{\frac{\sum (X - \overline{X})^2}{N - 1}} \cdot \frac{100\%}{\overline{X}}$$

where:

 $S = standard deviation^* of O.D. readings,$

- \overline{X} = mean of O.D. readings,
- X = individual O.D. readings,
- N = number of readings (wells)

* The expression given is equivalent to:

$$\sqrt{\frac{\sum (X^2) - \frac{1}{N} (\sum X)^2}{N-1}}$$

which is more convenient for calculation.

*Contact information contained within this document may be incorrect.