Comparing technical specification documents

Introduction

Flow cytometer manufacturers provide technical specification sheets (tech specs or spec sheets) that describe the instruments' key performance characteristics, and these documents can contain a wealth of information for those interested in purchasing a flow cytometer. Comparing various tech specs, however, can be challenging because their values may have been calculated in different ways, despite sharing the same terminology.

Technical specification sheets

The purpose of the spec sheet is to help you identify design attributes of the flow cytometer, such as performance, size, environment, and software, to determine if the instrument is a good fit for your research.

Comparing specifications from multiple manufacturers

Technical specifications can be used as a basis for comparison, helping you assess the value of different instruments for the price. The spec sheet is also a guide to the performance that the manufacturer will warrant. For this reason, you should have a good understanding of the stated values and how they pertain to your intended use of the instrument. When using the spec sheet as a comparison guide across platforms, be inquisitive. There are many performance values that appear comparable across instruments but in reality are quite different. A specification is derived from a specific test or calculation, but these tests are not standardized across instrument developers and may be misleading in a side-by-side comparison.

Sections within a technical specification sheet vary from one manufacturer to another, adding additional variability. Commonly published categories of information are described in Figures 1–8 using the spec sheet for the Invitrogen[™] Attune[™] NxT Flow Cytometer as an example. Key specifications that require special attention during flow cytometer evaluations are discussed, including helpful hints about how to decipher the variations.

Instrument spec	cifications										
Optics	• Laser power (as she	own in table below)									
	Laser	Wavelength (nm)	Beam-shaping optics (BSO)* (mW)	Diode power** (mW)							
	Violet	405	50	100							
	Blue	488	50	100							
	Green	532	100	140	-						
	Red	637	100	140							
	* Asserd of meaned address provide light happen from the base provides and the provides and										
	• Laser excitation: O	ptimized excitation fo		• FI	ow cell: Quartz cuvette gel coupled to 1.2 numerical aperture (NA) collection lens, 200 x 200 μ m						
	 Laser profile: 10 x 8 Emission filters: Up 			• Sample analysis volume: 20 µL to 4 mL							
	 Laser separation; Optical alignment; 		prealigned	• Ci	ustom sample flow rates: 12.5-1,000 µL/min						
	Onbeard thermoele	ectric cooler: No was	m-up delay	• Sa	ample delivery: Positive-displacement syringe pump for volumetric analysis						
	of usage • Flat top specified a	ant on/off reduces us	-	Sample tubes: Accommodates tubes from 17 x 100 mm to 8.5 x 45 mm							
	Upgradable: Conve	nient field changes		Fluid-level sensing: Active							
Fluidics	 Flow cell: Quartz cu Sample analysis vo Custom sample flo 	plume: 20 µL to 4 mL			tandard fluid reservoirs: 1.8 L focusing fluid tank, 1.8 L waste tank, 175 mL shutdown solution tank, and 75 mL wash solution tank						
	 Sample delivery: P Sample tubes: Acc 			Fluid storage: All fluids stored within instrument							
	 Fluid-level sensing Standard fluid rese 		fluid took	• Ex	xtended fluidics option: Configuration for 10 L fluid						
	 Standard Indra rese solution tank Fluid storage: All fluid 			• No	ominal fluid consumption: 1.8 L/day						
	 Extended fluidics of 	option: Configuration		• Au	utomated maintenance cycles: ≤15 min startup and shutdown—deep clean, sanitize, and debubble modes						
	 Nominal fluid cons 										
Performance			n startup and shutdown-deep of equivalent soluble fluoroch								
		lution: CV <2% for th	e singlet peak of propidium iod	do stained shicken and	Provide public (CEN)						
			ts/sec, 34 parameters, based								
			nts/sec with all parameters								
	Carryover: Single-ti										
			ole to discriminate platelets fro	n noise							
	 Forward and side s 	scatter resolution: O	otimized to resolve lymphocyte	solve lymphocytes, monocytes, and granulocytes in lysed whole blood bandpass filter							
	• Forward scatter: P	hotodiode detector w	th 488/10 nm bandpass filter								
	• Side scatter: PMT	with default 488/10 nr	h bandpass filter; optional 405/	10 nm bandpass filter							
	 Fluorescence dete 	ctors: 14 individual d	atectors								

Figure 1. Fluidics. The fluidics system of a flow cytometer transports the sample from the sample tube to the flow cell. Once through the flow cell (and past the laser and detector), the sample is transported to waste. The fluidics section in a spec sheet provides information about the sample, volume, flow rates, flow cell, and fluidic capacity.

ptics	 Laser power (as sl 	hown in table helow)										
51103	Laser	Wavelength (nm)	Bez	am-shaping optics	Diode power** (mW)							
			Dec	(BSO)* (mW)								
	Violet	405		Optics	 Laser 	Laser power (as shown in table below)						
	Green	532										
	Yellow	561				Laser	Wavelength (nm)	Beam-shaping optics (BSO)*	Diode power** (mW)			
	Red	637						(mW)				
	** Vendor-specified theoretical r	ser power after light has gone through naximum.	me beam optics a			Violet	405	50	100			
		Optimized excitation fo				VIOIGE	403		100			
		50 µm flat-top laser p				Blue	488	50	100			
	 Emission filters: U Laser separation: 	Ip to 14 color channels	with wave			Green	532	100	140			
		: Fixed alignment with	nrealigner			Green	002	100	140			
		lectric cooler: No wa				Yellow	561	50	100			
	 Simmer mode: Ins of usage 	tant on/off reduces us	age and/o			Red	637	100	140			
		at the flow cell: Coef	icient of vi		* 4			he has no extine and should a filters				
	 Upgradable: Conv 					or-specified theoretical r	iser power after light has gone through the	në beam optics and snaping inters.				
luidics		cuvette gel coupled to	1.2 numeri		Venuo	r-specified theoretical f	maximum.					
		olume: 20 µL to 4 mL ow rates: 12.5–1,000	d /min		 Laser 	excitation: Op	timized excitation for minim	ized stray laser-line noise and losses	s to reflection			
		Positive-displacement				<i>.</i>						
		commodates tubes fro		 Laser profile: 10 x 50 μm flat-top laser providing robust alignment 								
	 Fluid-level sensin 	g: Active			• Emiss	ion filters: Up t	to 14 color channels with w	avelength-tuned photomultiplier tub	es (PMTs): user-change			
	solution tank	ervoirs: 1.8 L focusing			keyed				oo (Finno), door ondrigo.			
		luids stored within inst										
		option: Configuration			e Lacor	congration: 15	50 um					
	 Nominal fluid con 		for 10 L flu		 Laser 	separation: 15	50 µm					
	* Automated main	sumption: 1.8 L/day						ned welded fiber; no user maintenan	ice required			
formance	 Fluorescence sen 		in startup		Optic	al alignment: Fi	ixed alignment with prealign		ice required			
rformance	 Fluorescence sen for APC 	sumption: 1.8 L/day enance cycles: <15 m isitivity: <80 molecule	in startup s of equiva	8	OpticationOnbox	al alignment: Fi ard thermoeled	ixed alignment with prealign ctric cooler: No warm-up c	delay; fiber isn't affected by on/off				
formance	Fluorescence sen for APC Fluorescence res	sumption: 1.8 L/day enance cycles: ≤15 m	in startup s of equiva e singlet p		 Optica Onbo Simm	al alignment: Fi ard thermoeled er mode: Instar	ixed alignment with prealign stric cooler: No warm-up o nt on/off reduces usage and					
formance	 Fluorescence sen for APC Fluorescence res Data acquisition r 	sumption: 1.8 L/day nance cycles: <15 m sitivity: <80 molecule olution: 6V <3% for th	in startup s of equiva e singlet p nts/sec, 34		 Optica Onbo Simm	al alignment: Fi ard thermoeled	ixed alignment with prealign stric cooler: No warm-up o nt on/off reduces usage and	delay; fiber isn't affected by on/off				
formance	 Fluorescence sen for APC Fluorescence res Data acquisition r Maximum electro Carryover: Single- 	sumption: 1.8 L/day enance cycles: ≤15 m situity: ≤80 molecule olution: 0V <3% for th rate: Up to 35,000 eve nic speed: 65,000 eve tube format: <1%	in startup s of equiva e singlet p nts/sec, 34 ints/sec w		 Optic. Onbo Simm report 	al alignment: Fi ard thermoeled er mode: Instar is hours of usage	ixed alignment with prealign stric cooler: No warm-up cont on/off reduces usage and e	delay; fiber isn't affected by on/off d/or aging by 10x; only keep it "on" v	vhen acquiring samples			
formance	 Fluorescence sen for APC Fluorescence res Data acquisition r Maximum electro Carryover: Single- Forward and side 	sumption: 1.8 L/day enance cycles: ≤15 m situity: ≤80 molecule olution: 0V <3% for th ate: Up to 35,000 eve nic speed: 65,00 eve tube format: <1% scatter sensitivity: A	in startup s of equiva e singlet p nts/sec, 34 ints/sec w		 Optic: Onbo Simm report Flat to 	al alignment: Fi ard thermoeled rer mode: Instar is hours of usage op specified at	ixed alignment with prealign ctric cooler: No warm-up o nt on/off reduces usage and e the flow cell: Coefficient o	delay; fiber isn't affected by on/off	vhen acquiring samples			
formance	Fluorescence sen for APC Fluorescence res Data acquisition r Maximum electro Carryover: Single- Forward and side Forward and side	sumption: 1.8 L/day enance cycles: <15 m situity: s80 molecule olution: X/ <3% for th ate: Up to 33,000 eve nic speed: 65,00 eve tube format: <1% scatter sensitivity: A scatter resolution: C	in startup s of equiva e singlet p nts/sec, 34 ints/sec w bib to disc ptimized to		 Optic: Onbo Simm report Flat to 	al alignment: Fi ard thermoeled rer mode: Instar is hours of usage op specified at	ixed alignment with prealign stric cooler: No warm-up cont on/off reduces usage and e	delay; fiber isn't affected by on/off d/or aging by 10x; only keep it "on" v	vhen acquiring samples			
formance	Fluorescence sen for APC Fluorescence res Data acquisition n Maximum electro Carryover: Single- Forward and side Forward and side Forward scatter: I	sumption: 1.8 L/day nance cycles: <15 m sitvity: <80 molecule olution: <<3% for th ate: Up to 33,000 eve nic speed: 65,000 eve tube format: <1% scatter sensitivity: A scatter sensitivity: A Photodiode detector w	in startup s of equiva e singlet p nts/sec, 34 ints/sec w bla to disc ptimized to tth 488/10	THIT Data pass mer	Optic: Onbo Simm report Flat to Upgra	al alignment: Fi ard thermoeled rer mode: Instar is hours of usage op specified at	ixed alignment with prealign ctric cooler: No warm-up o nt on/off reduces usage and e the flow cell: Coefficient o	delay; fiber isn't affected by on/off d/or aging by 10x; only keep it "on" v	vhen acquiring samples			
formance	Fluorescence sen for APC Fluorescence res Data acquisition r Maximum electro Carryover: Single Forward and side Forward and side Forward scatter: Side scatter: PMT	sumption: 1.8 L/day nance cycles: <15 m situity: <80 molecule olution: 1/ <3% for th tate: Up to 3000 eve nic speed: 65,00 eve tube format: <1% scatter resolution: C Photodiode detector w with default 488/10 m	in startup s of equiva e singlet p nts/sec, 34 ints/sec w bit to disc ptimized to th 488/10 n bandpas	THIT Data pass mer	 Optic: Onbo Simm report Flat to 	al alignment: Fi ard thermoeled rer mode: Instar is hours of usage op specified at	ixed alignment with prealign ctric cooler: No warm-up o nt on/off reduces usage and e the flow cell: Coefficient o	delay; fiber isn't affected by on/off d/or aging by 10x; only keep it "on" v	vhen acquiring samples			
formance	Fluorescence sen for APC Fluorescence res Data acquisition r Maximum electro Carryover: Single- Forward and side Forward and side Forward acatter: Side scatter: PMT Fluorescence det	sumption: 1.8 L/day nance cycles: <15 m ishtity: s80 molecule olution: 1 <3% for th ate: Up to 3800 eve nic speed: 65,000 eve tube format: <1% scatter ensolution: C Photodiode detector w with default 48/10 m ectors: 14 individual d	in startup s of equive e singlet p nts/sec, 34 ints/sec w bla to disc ptimi2ad to th 488/10 n bandpas etectors	ss filter; optional 405	Optic: Onbo Simm report Flat tc Upgra	al alignment: Fi ard thermoeled rer mode: Instar is hours of usage op specified at	ixed alignment with prealign ctric cooler: No warm-up o nt on/off reduces usage and e the flow cell: Coefficient o	delay; fiber isn't affected by on/off d/or aging by 10x; only keep it "on" v	vhen acquiring samples			
formance	Fluorescence sen for APC Fluorescence res Data acquisition n Maximum electro Carryover: Single- Forward and side Forward and side Forward scatter: IN Side scatter: PM Fluorescence det Electronic pulse:	sumption: 1.8 L/day nance cycles: <15 m onlocule shritiy: s20 molecule olution: V <3% for th ate: Up to 35,000 eve nic speed: 65,000 eve tube format: <1% scatter sensitivity: A scatter sensitivity: A scatter resolution Photodiode detector w with default 488/10 m with default 488/10 m default 488/10 m	in startup s of equiva e singlet p hts/sec, 34 ints/sec w bla to disc ptimi2ad to ith 488/10 n bandpas etectors and width	ss filter; optional 405	Optic: Onbo Simm report Flat tc Upgra	al alignment: Fi ard thermoelec er mode: Instar is hours of usage op specified at adable: Conveni	ixed alignment with prealign ctric cooler: No warm-up o nt on/off reduces usage and e the flow cell: Coefficient o	delay; fiber isn't affected by on/off d/or aging by 10x; only keep it "on" v	vhen acquiring samples			

Figure 2. Optics. As an analysis platform, flow cytometry relies on interrogation of individual cells by laser light and the collection of the resulting fluorescence and scatter. The optics system handles illumination and light collection within the instrument. The optics section in the sheet provides overviews of optical specifications such as laser type and power, laser profile, alignment, and photomultiplier tubes (PMTs).

Pay special attention to: laser power Specified in mW

The power specification is most frequently defined as the laser's output as published by the laser manufacturer (Figure 2). However, the power specification stated does not necessarily correspond with the power that is actually delivered at the point of interrogation, because light losses in the optical components between the laser and the flow cell can be large. This light loss varies from system to system. High light loss means that some of the laser's power is not being fully utilized in the experiment; reduced light loss means higher laser intensity on the flow cell, leading to greater excitement of the fluorophores and greater sensitivity. Because of this variability, a higher number for laser power indicated on the spec sheet does not mean that the instrument is more sensitive than another.

How to compare

Be cautious in how much you rely on this specification when comparing instruments. Most manufacturers don't report the actual power that is reaching the flow cell, but this is where the comparison should be made.

Pay special attention to: pinholes and laser alignment design

This specification, which is not reported by every

manufacturer, refers to the number of pinholes that determine if the fluorescence signal generated by each laser is separated at the detectors (also called PMTs). You should know if the system's lasers are spatially separated by internal pinholes or whether the system is collinear. Pinholes allow for maximal excitation of fluorophores and minimal crosstalk between the laser lines.

Several flow cytometer manufacturers utilize collinear lasers. When lasers are aligned in a collinear fashion through a single pinhole, there is a collection of signal from more than one laser in the same optical path. This configuration means that the response of several dyes excited by different lasers is measured by the same detector, which can affect compensation values and lead to difficulty in analysis. Other risks in this design include susceptibility to alignment issues (increased coincidence rate if the beams are not exactly collinear) or reduced sensitivity for dim labels. An alternate design is a spatially separated system (Figure 2). This configuration has several benefits, including resistance to alignment problems, more choices for laser colors, and improved compensation for multicolor panels.

How to compare

Be sure you have a clear understanding of the type and quantity of lasers that are assigned to each pinhole, and ask if the system under consideration uses spatially separated or collinear lasers.

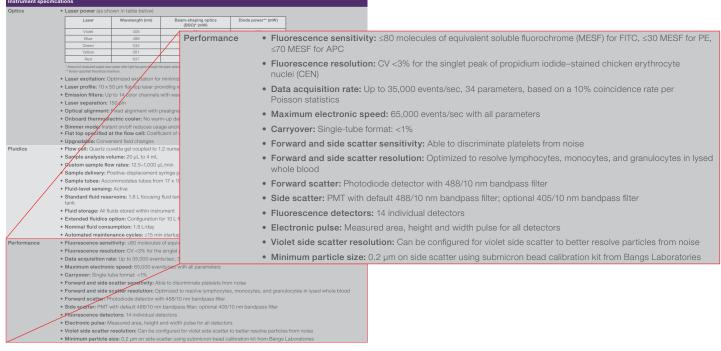


Figure 3. Performance. Of the typical specifications published widely among manufacturers, the performance section of a spec sheet contains several common features, such as MESF calculations, data acquisition rate, and parameters for forward scatter (FSC) and side scatter (SSC).

Pay special attention to: maximum event rate or theoretical maximum event rate Specified as events/sec

The event rate is the physical count of the cells or particles as they pass through the instrument's interrogation point. Two basic yet quite different methods are used to determine what the value is, even though this value is generally cited in the same way (i.e., events/sec). The two methods for calculating event rate are:

- Assessing how fast the electronics can process events
- Assessing the maximum event rate once a specific coincidence rate has been reached

It's important to understand how the manufacturer arrived at this value in the spec sheet.

Method 1

The first method is theoretical and disregards the rate of coincidence and other instrument design features such as the system fluidics. Thus, while the electronics may be able to process events at 10,000–100,000 events/sec, this event rate may correspond to a coincidence rate well above the generally accepted 10% rate limit according to Poisson distribution. This way of presenting the specification for event rate has become more popular in recent years due to the advent of faster (though not necessarily higher-quality) electronic circuitry; however, event rates calculated this way don't take coincidence into consideration.

Method 2

The second method of determining an instrument's event rate is based on a 10% level of coincidence, which is more relevant to researchers (Figure 3). Lower coincidence rates indicate higher data integrity. Therefore, using this method best represents acceptable coincidence at an actual event rate that can be used to generate high-quality data. Users can be more confident that the data will be within acceptable coincidence rate levels at a given event rate when manufacturers report their specification for event rate using this method.

How to compare

When deciding between instruments, be sure that you know how the manufacturer arrived at the specification for event rate. If this value was calculated using the first methodology (speed of electronics only), you should carefully examine the coincidence rates when running your samples.

Pay special attention to: carryover

Carryover refers to the amount of an original sample that carries over and contaminates the next sample, resulting in data inaccuracies (Figure 3). The percentcarryover specification is usually measured by acquiring a fixed volume of sample, followed by acquiring a fixed volume of a particle-free, buffer-only solution such as phosphate-buffered saline (PBS). Events representing the contaminating cells are then identified in the bufferonly solution. Many manufacturers run a specific cell line or set of beads to determine this carryover value under defined conditions.

How to compare

It's important to find out what these defined conditions are and what sample was used to determine a carryover value. For example, the number of washes or the size or type of particles or cells used for the specification test may be vastly different from what a researcher would use. Ask the manufacturer how they arrived at their stated carryover value. Knowing how different manufacturers calculate this value can help you make a direct comparison of carryover just by referring to the specification.

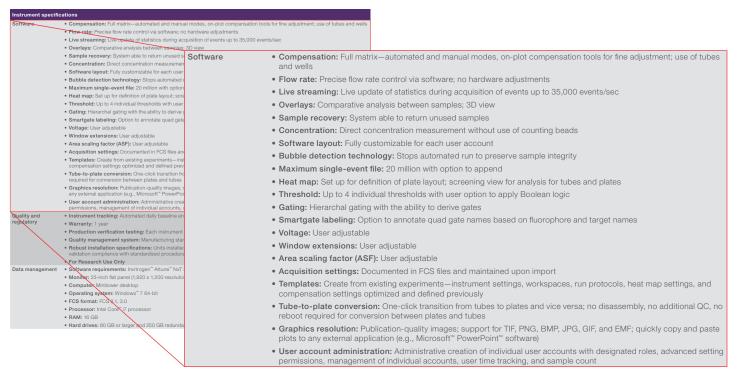


Figure 4. Software. The software section of a spec sheet enables researchers to identify key capabilities and features built into the system. This section also indicates the extent of functionality, user-definable features, maintenance features, and user account administration. Software features vary among manufacturers and some systems have unique, exclusive options.

Instrument spec	ifications	
Instrument spec Software	iffoations Compensation: Full matrix—automated and manual modes, on-plot compensati Flow rate: Precise flow rate control via software, no hardware adjustments Ve streaming: Live update of statistics during acquisition of events up to 35,00 Overlays: Comparative analysis between samples; 3D view Sample recovery: System able to return unued samples Concentration: Direct concentration measurement without use of counting bead Software layout: Fully customizable for each user account Bubble detection technology: Stops automated run to preserve sample integrit Maximum single-event file; 2D million with option to append Heat map: Sot up for delinition of plate layout; sorrening view for analysis for tub Threshold: Up to 4 individual thresholds with user option to apply Boolean logic Gating: Haranchal gating with the ability to day of the day and the day of the day of the day and the advistion of gate Voltage: User adjustable Viotage: User adjustable Area scaling factor (197): User adjustable Area scaling factor (197): User adjustable	e vents/sec a a b events/sec b events/s
Quality and regulatory	Templates Frank from existing experiments—Ins comparison setting experiments—Ins comparison setting experimental and defined prev Instance optiate conversion: One-citek transition for required for conversion between plates and tubes Graphics resolution; Publication-quality images: any external application (e.g., Microsoft: "PowerPoi User account administration: Administrative creat permissions, management of Individual accounts, Instrument tracking: Automatic daily baseline an	 Production vermeation testing. Each instrument is tested and vermed for assembly integrity and performance to specifications Quality management system: Manufacturing standards comply with the requirements of ISO 13485:2003 Robust installation specifications: Units installed by engineer; preplanning checklist, delivery, and installation; and performance validation compliance with standardized procedure
	Warranty: 1 year Production verification testing: Each instrument	For Research Use Only
Data managemen	Ouality management system: Manufacturing tail-baseseeings were requere Robust installation specifications. Units installed by engineer; preplanning che vagicatiene compliance with standardized procedure For Research Use Only Software requirements: Invitrogen" Attune" NxT Software Monitor; 23-inch itat panel (1,920 x 1,200 resolution); dual-monitor capability Computer: Minitower desktop Operating system: Windows" 7 64-bit FCS format: FCS 31, 3.0 Processor: Intel Core ¹ / processor RAM: 16 GB Hard drives: 80 GB or larger and 250 GB redundant array of independent disks	

Figure 5. Quality and regulatory. Quality and regulatory specifications indicate manufacturing integrity, warranty, field engineering procedures, and ISO credentials.

Instrument specifi	ications								
Software	Compensation: Full matrix—automated and manual	modes, on-plot compensation	tools for fine adjustment; use of tubes and wells						
	· Flow rate: Precise flow rate control via software; no h	hardware adjustments							
	Live streaming: Live update of statistics during acqu	uisition of events up to 35,000 e	avents/sec						
	Overlays: Comparative analysis between samples; 3	D view							
	Sample recovery: System able to return unused same	nples							
	Concentration: Direct concentration measurement w	without use of counting beads							
	Software layout: Fully customizable for each user act	count							
	Bubble detection technology: Stops automated run	n to preserve sample integrity							
	 Maximum single-event file: 20 million with option to 	append							
	Heat map: Set up for definition of plate layout; screen		and plates						
	 Threshold: Up to 4 individual thresholds with user op 								
	 Gating: Hierarchal gating with the ability to derive gat 								
	 Smartgate labeling: Option to annotate quad gate na 	ames based on fluorophore an	d target names						
	 Voltage: User adjustable 								
	 Window extensions: User adjustable 								
	 Area scaling factor (ASF): User adjustable 								
	Acquisition settings: Documented in FCS files and n	maintained upon import							
		Data	Software requirements	: Invitrogen [™] Attune [™] NxT Software					
	required for conversion between plates and tubes	management	• Monitor: 23-inch flat pa	nel (1,920 x 1,200 resolution); dual-monitor capability					
	 Graphics resolution: Publication-quality images; any external application e.g., Microsoft[®] PowerPo 		• Computer: Minitower de	sktop					
	 User account administration: Administrative creater permissions, pranagement of individual accounts, 		Operating system: Win	dows™ 7 64-bit					
Quality and	 Instrument tracking: Automated daily baseline an 								
regulatory	• Warranty: 1 year		 FCS format: FCS 3.1, 3. 	0					
	Production verification testing: Each instrument		• Processor: Intel Core™ i7 processor						
	 Quality management system: Manufacturing stat 		• Processor: Intel Core	7 processor					
	 Robust installation specifications: Units installed validation compliance with standardized procedure 		• RAM: 16 GB						
	For Research Use Only		• Hard drivers 90 GP or l	arger and 500 GB redundant array of independent disks (RAID)-compatible hard drives					
Data management	· · ·		• Haru unves. 80 GB 01 h	arger and 500 GB redundant array of independent disks (NAID)-compatible hard drives					
	 Monitor: 23-inch flat panel (1,920 x 1,200 resolution); 	; dual-monitor capability							
	Computer: Minitower desktop								
	 Operating system: Windows" 7 64-bit FCS format: FCS 3.1, 3.0 								
-	Processor: Intel Core [™] i7 processor BAM: 16 GB								
		own of independent data (Print	(D) compatible band drives						
	Hard drives: 80 GB or larger and 500 GB redundant	array or independent disks (RA	NU)-compatible nard drivês						

Figure 6. Data management. This section is key for successful computer installation and setup. Specifications within this section detail RAM, hard drives, and FCS format.

Instrument specific	ations												
Installation requirements	Thermo directiv require Device	s and Radiol	ntific ce ne CE m 0,1). The ogical H	rtifies that f ark. The ins Attune Nx	the Attur strument T Flow C	ne NxT Flo t also con Cytometer	ow Cytome forms to th is a Class	e UL and I laser pro	CAN/CSA				
	 Heat dissipation: <150 W Temperature operating ranges: 15-7 Operating humidity: 10-90%, noncoi Audible noise: <65 dBA at 1.0 m Instrument size (H x W x D): ~40 x 56 Weight: ~29 kg (64 lb) Available configurations (as shown in 					n requirements			 Electrical requirements: 100–240 VAC, 50/60 Hz, <150 W Thermo Fisher Scientific certifies that the Attune NxT Flow Cytometer conforms to relevant directives to bear the CE mark. The instrument also conforms to the UL and CAN/CSA general requirements (61010.1). The Attune NxT Flow Cytometer is a Class I laser product per Center for Devices and Radiological Health (CDRH) regulations and EN/IEC 60825. Heat dissipation: <150 W 				
	Lasers Cat. No. Violet Configuration Cat. No. 405 nm Blue A24864 Available as								 Temperature operating ranges: 15–30°C (59–86°F) Operating humidity: 10–90%, noncondensing 				
	2	Blue/green Blue/yellow Blue/red	A28995 A24861 A24863	Available as upgrade Available as upgrade Available as				 Instr 	rumen	noise: <65 dBA at 1.0 m ent size (H x W x D): ~40 x 58 x 43 cm (16 x 23 x 17 in.), including fluid bottles			
	2	Blue/violet Blue/violet 6	A24862 A29002	upgrade 4 6		upgrade			<i>.</i>	~29 kg (64 lb) e configurations (as shown in table below)			
		Blue/green/red	A28997 A28993	Available as upgrade Available as	3	- 4	4	3	12				
	3	Blue/green/ violet	A28999	upgrade 4	3	-	4	Available as upgrade	13				
		Blue/violet/ yellow	A24859	4	3	4	-	Available as upgrade	13				
		Blue/red/violet Blue/red/	A24860	4	4	Available as upgrade Available as	Available as upgrade	3	13				
	4	violet 6 Blue/red/violet	A29003 A29001	6	3	upgrade	- 4	3	14				
		/green Blue/red/yellow	A29001 A24858	4	3	- 4	-	3	16	-			
		/violet Blue/red/yellow /violet 6	A29004	6	2	3	-	3	16	-			

Figure 7. Installation requirements. A typical requirements section denotes information about the environmental impact of the instrument, operating conditions, and footprint.

Pay special attention to: operating temperature

Specified in $^\circ\text{C}$ or $^\circ\text{F}$

This specification is often overlooked, yet can be important to the lifetime value of your instrument because optical alignment and fluidics are highly coupled to these values (Figure 7).

How to compare

Determine if the lab remains at relatively constant temperature and if the instrument will be used in a variety of places. Instrument performance is tested and warranted only within the specified temperature range, so be sure to consider the conditions of operation.

Pay special attention to: size and weight

Specified as H x W x D in cm or in.; instrument weight in kg or lb

Consider whether the instrument will fit in the desired space or area available in a fume hood. Be sure to include the space requirements for accessories such as an autosampler and find out if any space will be necessary for the fluidics (Figure 7). An external fluidics system is common for many flow cytometers and can add substantially to the overall space needed for the instrument. If the instrument will be moved periodically, think about how difficult this might be. Be aware that not all benchtop instruments have the same space requirements or portability.

How to compare

When a demo is being performed, request to see the full system with all components set up so that you're able to directly compare the space needed for each system.

Performance	High-throughput mode acquisition time: <42 min for 96-well plate, <180 min for 384-well plate tosing one rinse and one mix, and full analysis of a 40 µL sample)								
	Carryover: <0.5% In plate loader format (standard mode, 2 wash cycles); multiple-rinse capability for ultralow carryover								
	Sample mixing: Mixing optimized to pr Pe analysis volume	erformance	 High-throughput mode acquisition time: <42 min for 96-well plate, <180 min for 384-well plate (using o and one mix, and full analysis of a 40 µL sample) 						
	Mixing method: Each well mixed via fu		Carryover: <0.5% in plate loader format (standard mode, 2 wash cycles); multiple-rinse capability for ultralow						
	 Wash cycle: User-defined number of w time to acquire plates 		carryover.						
	 Minimum dead volume (single draw): 		• Sample mixing: Mixing optimized to preserve cell viability; mixing cycles optimized to sample analysis volume						
	 Sample window: Protectively coated w exposure to ambient light during acquis 		Mixing method: Each well mixed via full aspiration (no shaking)						
	• Auto-calibration: Regular, 30-day inte		Wash cycle: User-defined number of wash cycles, dependent on plate-processing protocol and time to						
Fluidics	 Plate and tube compatibility: One-clie disassembly, no additional QC, no rebo 		acquire plates						
	Compatible plate types: 96 deep-well round, and V-bottom), 384-well standar round, and V-bottom)		 Minimum dead volume (single draw): 30 µL for 12.5–200 µL/min, 50 µL for 50–1,000 µL/min Sample window: Protectively coated window allows visibility to well progress while preventing exposure to ambient light during acquisition 						
	 Cleaning cycles: Automated daily and Fluidics requirements: 800 mL total o 		Auto-calibration: Regular, 30-day interval, system-initiated function						
	96-well plates FI • Extended fluidics option: Optional ex	luidics	Plate and tube compatibility: One-click transition from tubes to plates and vice versa; no disassembly, no additional QC, no reboot required for conversion between plates and tubes						
Installation requirements	 Size (W x D x H): ~40 x 29 x 29 cm (16 Space requirements: Minimum width: 40 cm (15.8 in.); when att 		Compatible plate types: 96 deep-well (flat, round, and V-bottom), 96-well standard depth (flat, round, and V-bottom), 384-well standard depth (flat, round, and V-bottom), 384 deep-well (flat, round, and V-bottom)						
	cm (65.8 in.)		Cleaning cycles: Automated daily and monthly cleaning protocols						
	 Minimum depth. 58.5 cm (23.1 in.) provide in front of the unit to place fluidics bottles. 		• Fluidics requirements: 800 mL total of onboard fluid tanks, capable of running four 96-well plates						
	- Minimum clear height: 74 cm (29 in.) abov		 Extended fluidics option: Optional external fluid tank with 10 L fluid capacity 						
	Mounting: Side								
	• Weight: ~16 kg (35 lb)								
	• Operating range (environmental conditions): 15–30°C (50–95°F)								
	Operating humidity: <80% noncondensing Electrical requirements: 100-240 VAC, 50/60 Hz, <300 W								

• Electrical requirements: 100-240 VAC, 50/60 Hz, <300 W

Figure 8. Sampler specifications. A sampling device is an accessory to the flow cytometer. Specifications of this device include acquisition time, carryover, and mixing method. Additional information regarding compatible plate types and fluidics options may also be included.

Pay special attention to: plate analysis speed Specified in minutes per 96- or 384-well plate

Plate-speed values are typically defined as the time required to complete analysis of a 96- or 384-well plate (Figure 8). There are two aspects to this definition: one is the sample volume, the other is the sample-processing rate. Be aware that the time value reported in this specification may represent a sacrifice in data quality. Also, be sure to get clarity on what volume of sample was analyzed and what sample processing rate was used to determine the value in this specification. Some manufacturers choose to show a specification figure that minimizes plate times by collecting low-volume samples. However, in practice this could require samples to be highly concentrated, resulting in data quality issues like higher coincidence and abort rates. Conversely, if samples aren't concentrated enough, a low volume may lead to a lack of enough events to be statistically significant.

The sample-processing rate (the rate at which the sample is being introduced to the fluidics system) can also affect the data quality. In flow cytometers that rely solely on hydrodynamic focusing, the sample is spread across a wider core stream as the flow rate increases. Higher sample rates produce greater variability, less precise measurements, and compromised data quality. With instruments that utilize acoustics-assisted hydrodynamic focusing, the cells remain tightly aligned in the center of the stream regardless of the sample rate, resulting in less signal variation and improved data quality. Therefore, if you

invitrogen

choose to increase the sample input rate in order to lower plate times, you should use a system that offers acoustic focusing to avoid loss of data quality.

Another variable in calculating the plate analysis speed is whether the probe is rinsed between samples. Probes that are not rinsed introduce the potential for higher carryover—a tradeoff that should be considered before making a decision to run experiments at the given specification for plate analysis time.

How to compare

Make sure you understand the tradeoff in data quality that may be incurred to achieve the times the manufacturer represents with this specification.

Conclusion

Always inquire about the tests associated with pertinent specification values, so you can be confident that you're making accurate comparisons between the features of the instruments under consideration.

Resource

Investigating flow cytometry instrument capabilities to maximize your research The 40-page Flow Cytometer Evaluation Guide will enable a better understanding of the components and capabilities of various flow cytometers, for objective comparison of instruments from several manufacturers.

Get the guide at thermofisher.com/compareflow

Decide for yourself at thermofisher.com/compareflow

For Research Use Only. Not for use in diagnostic procedures. © 2018 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Intel Core is a trademark of Intel Corporation. Microsoft, PowerPoint, and Windows are trademarks of Microsoft Corporation. COL32262 0318